中文字幕日本人妻久久久免费_中文字幕久久久人妻无码_中文字幕在线观看_非洲黑人吊巨大vs亚洲女

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

當前位置首頁 > 新聞中心

蛋白質外聚物中多糖的比例——結論、致謝!

來源(yuan):上海謂載 瀏覽 1212 次 發布(bu)時間(jian):2021-10-12


四、結論


油和(he)/或 Corexit 的(de)存在會導致(zhi) EPS 的(de)蛋白(bai)質:多糖(tang)(tang)比(bi)(bi)率(lv)(lv)更高(gao),并(bing)在中胚層(ceng)實驗中降低 SFT。 在這些實驗中,SFT 與 蛋白(bai)質:具有負斜率(lv)(lv)的(de) EPS 多糖(tang)(tang)。 當開(kai)闊(kuo)的(de)海(hai)洋 水域(yu)和(he)兩種(zhong)不同的(de)沿海(hai)水處理進行了(le)比(bi)(bi)較, 蛋白(bai)質趨勢:多糖(tang)(tang)為 CEWAF > DCEWAF > WAF ≥ Control 并(bing)且對(dui)于 SFT,它是相反的(de), CEWAF < DCEWAF < WAF ≤ 對(dui)照。 因此(ci),SFT 與膠體 EPS 中的(de)蛋白(bai)質:多糖(tang)(tang)比(bi)(bi)率(lv)(lv)成反比(bi)(bi)。


當中宇宙水柱(zhu)的(de)不同(tong)尺寸分(fen)(fen)數(shu)為(wei) 相比(bi)之下,我(wo)們發現 EPS 膠體可以降(jiang)(jiang)低(di) SFT 蛋白(bai)質:多糖比(bi)例,表明有(you)效的(de)生物(wu)乳化 蛋白(bai)質的(de)容量。 粒子濾波中 SFT 的(de)比(bi)較 分(fen)(fen)數(shu) (< 0.45 μm) 和(he) EPS 膠體分(fen)(fen)數(shu) (< 0.45 μm 和(he) > 3 kDa),對于真正(zheng)溶解(jie)的(de)部分(fen)(fen) (< 3 kDa),它(ta)是 表明只有(you)前(qian)兩個(ge)包含(han) EPS 的(de)部分(fen)(fen)具有(you)容量 以降(jiang)(jiang)低(di) SFT,而 < 3 kDa 級分(fen)(fen)顯示與以下相同(tong)的(de) SFT 純(chun)海水或只有(you)真正(zheng)溶解(jie)有(you)機碳(tan)的(de)海水。


顯(xian)微(wei)鏡技(ji)術(即 CLSM 和 SEM)證實,正如預(yu)測(ce)的(de)(de)(de)(de)(de)(de)那(nei)樣,蛋白質(zhi)主要在空氣 - 水(shui)界面(mian)富集(ji), 強烈影響空氣/水(shui)界面(mian)處的(de)(de)(de)(de)(de)(de) SFT 治療。 這(zhe)些(xie)技(ji)術還可視化(hua)(hua)了不同的(de)(de)(de)(de)(de)(de)聚集(ji)體尺寸 和它們的(de)(de)(de)(de)(de)(de)分(fen)散,以及聚集(ji)體形成(cheng)(cheng)的(de)(de)(de)(de)(de)(de)重要性 通(tong)過(guo)陰離子(zi)EPS組(zu)分(fen)部分(fen)之間的(de)(de)(de)(de)(de)(de)Ca2+"橋接(jie)"。 SFT 可能會(hui)發生微(wei)小的(de)(de)(de)(de)(de)(de)變(bian)化(hua)(hua),與(yu)(yu)蛋白質(zhi):多(duo)糖比率的(de)(de)(de)(de)(de)(de)變(bian)化(hua)(hua)相(xiang)吻合(he),這(zhe)可能是 pH 值變(bian)化(hua)(hua)的(de)(de)(de)(de)(de)(de)原因(十分(fen)之一) 單(dan)(dan)位),如 EPS 模(mo)型化(hua)(hua)合(he)物(wu)所示,這(zhe)可能在 CMC 周(zhou)圍最為突出。 此外(wai),我們表明蛋白質(zhi)和酸性多(duo)糖的(de)(de)(de)(de)(de)(de) EPS 模(mo)型成(cheng)(cheng)分(fen)比 Corexit 導致海(hai)水(shui)中膠束的(de)(de)(de)(de)(de)(de)自組(zu)裝甚至 當這(zhe)些(xie)成(cheng)(cheng)分(fen)的(de)(de)(de)(de)(de)(de)濃(nong)度(du)很低時(shi)。 這(zhe)個 表明 EPS 在形成(cheng)(cheng)方面(mian)與(yu)(yu) Corexit 相(xiang)同或更有效 乳液。 然而,關于相(xiang)互作用的(de)(de)(de)(de)(de)(de)更系統的(de)(de)(de)(de)(de)(de)研究 不同組(zu)件(jian)的(de)(de)(de)(de)(de)(de)不同組(zu)合(he),以及更多(duo)型號 單(dan)(dan)獨(du)的(de)(de)(de)(de)(de)(de)化(hua)(hua)合(he)物(wu),可能需要更多(duo)地闡明在我們的(de)(de)(de)(de)(de)(de)中宇(yu)宙實驗中觀察到的(de)(de)(de)(de)(de)(de)復(fu)雜性。


致謝


這項研究得到(dao)了墨西哥灣(wan)(wan)的(de)(de)資助 支持名為 ADDOMEx 的(de)(de)聯盟(meng)研究的(de)(de)研究計劃 (微生物對分散劑和(he)油的(de)(de)聚集和(he)降解 Exopolymers) 聯盟(meng)。 原始數據可以在(zai)海灣(wan)(wan)找到(dao) 墨西哥研究倡議(yi)信息和(he)數據合作組(zu)織(zhi) (GRIIDC) 在(zai)網址 //doi.org/10.7266/N7PK0D64; //doi.org/10。 7266/N78P5XZD; //doi.org/10.7266/N74X568X; //doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. //doi.org/10.1021/la035751.


 Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. //doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. //doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. //doi.org/10.1146/annurev.marine.010908.163904.


 Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. //doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. //doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. //doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. //doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. //doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. //doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, //doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. //doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. // doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. //doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. //doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. //doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. //doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. //doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. //doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. //doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. //doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. //doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. //doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. //doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. //www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. //doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. //doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. //doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. //doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. //doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. //doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. //doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. //doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. //doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. //doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. //doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. //doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. //doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. // doi.org/10.3389/fmicb.2017.02369.



蛋白質外聚物中多糖的比例——摘要、簡介

蛋白質外聚物中多糖的比例——方法

蛋白質外聚物中多糖的比例——結果與討論

蛋白質外聚物中多糖的比例——結論、致謝!